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Abstract

A linear stability analysis examining the stability of a fully-developed, two-dimensional Hagen±
Poiseuille resuspension ¯ow is presented. Whilst the analysis includes the non-uniformity of the particle
concentration distribution, the inclusion of any concentration ¯uctuations is ignored. Numerical
solutions to the relevant Orr±Sommerfeld equations for temporal disturbance modes are obtained with
the aid of ortho-normalization for a variety of di�erent parameters by means of a classical shooting
technique. It is found that interfacial instabilities result from long wavelength disturbances even in a
small Reynolds number range. The growth rates of disturbances are shown to increase with decreasing
initial feed concentration, whilst increasing density strati®cation is shown to stabilize the resuspension
¯ow. It is also shown that the neglect of ¯uctuations in the particle concentration severely limits the
validity of the stability analysis performed, especially for ¯ows in which the particle concentration in the
interfacial region varies rapidly. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shear-induced di�usion is the process by which particles within a shear ¯ow migrate
permanently across streamlines down gradients in the shear rate and concentration, as a result
of interparticle interactions. Previous research has investigated the process of shear-induced
di�usion within a number of laminar ¯ows. It has been shown that this process greatly a�ects
the rheology and the ¯ow behaviour of particulate suspensions, i.e. an initially homogeneous
¯ow develops non-uniformities in its concentration distribution, which in turn a�ects the
velocity ®eld within the suspension. An example of this is termed `viscous resuspension' when
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an initially settled bed of negatively buoyant particles, which has a clear ¯uid layer above, can
be resuspended as a result of the shear generated when the clear ¯uid layer ¯ows. However, in
all the situations considered so far, it was assumed that the base ¯ows are steady, see for
example Leighton and Acrivos (1986), Scha¯inger et al. (1990) and Miskin et al. (1996a). It has
then been shown that under certain conditions the interface between the resuspended layer and
the clear ¯uid layer becomes unstable to interfacial waves, which are ampli®ed as they travel
downstream in a similar way to those observed in gravity settlers, see for example
Herbolzheimer (1983), Shaqfeh and Acrivos (1987), Borhan and Acrivos (1988) and Borhan
(1989). Thus, the determination of the stability characteristics for laminar base ¯ows is clearly
a matter of interest, especially since under certain ¯ow conditions Scha¯inger et al. (1995)
observed a considerable discrepancy between the measured and the calculated pressure drop
within the channel.
There have been many previous investigations which have examined the stability of two-

phase ¯uid ¯ow phenomena. These ¯ows involving the transport of concentrated slurries have
most commonly been examined as `layered' problems. By this it is implied that the slurry
consists of distinct uniform layers, with each layer having di�erent physical properties. Many
of these studies have dealt with the stability of convective suspension ¯ows arising in inclined
settlers, see for example Acrivos and Herbolzheimer (1979), Schneider (1982), Davis et al.
(1983), Shaqfeh and Acrivos (1987), etc. The investigation of Zhang et al. (1992) looked into
the stability of a Hagen±Poiseuille suspension ¯ow in a horizontal two-dimensional channel
with the e�ects of surface tension and gravity neglected. In that study, the initial base pro®les
for the particle concentration, f, and the unperturbed streamwise bulk velocity ®eld, U, were
established from viscous resuspension calculations which were performed by Scha¯inger et al.
(1990). However, since the resulting pro®les varied across the channel in a highly nonlinear
manner, which would presumably lead to complications in the stability calculations via the
solution of the relevant Orr±Sommerfeld equations, Zhang et al. (1992) proposed to consider a
mean concentration, f

�
, within the resuspended layer. This mean particle concentration was

de®ned as

f
�� 1

ht

�ht
0

f�z�dz �1�

where z is the non-dimensional distance measured vertically from the bottom surface of the
channel and ht is the value of z at which the interface between the particulate suspension and
the clear ¯uid layer occurs. However, a more appropriate de®nition than that of the mean
particle concentration may be that of a weighted concentration,f

�
, namely

f
��

� ht
0 f�z�u�z� dz� ht

0 u�z� dz
�2�

since an experimentalist is likely to maintain a constant particle mass ¯ux as opposed to a
constant particle concentration.
This class of problem, i.e. the stability analysis of Couette±Poiseuille type ¯ows in which

viscous strati®cations exist, has been addressed previously by many researchers, including the
theoretical approaches considered by Yih (1967), Yu and Sparrow (1969), Hooper and Boyd
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(1983, 1987), Yiantsios and Higgins (1988a,b), etc. and the experimental examination
undertaken by Kao and Park (1972). From the aforementioned theoretical studies, it was
found that there were essentially two main types of instabilities arising, namely those occurring
at small and large Reynolds numbers. Yih (1967) detected instabilities while considering long
wavelength disturbances and then demonstrated that viscous strati®cation alone gave rise to
the formation of interfacial waves, even at vanishingly small Reynolds numbers. Hooper and
Boyd (1983) noted instabilities when considering short wavelength disturbances, as well as
those occurring for long wavelength disturbances, when the stabilizing e�ects of surface tension
were ignored. Yiantsios and Higgins (1988b) extended the work of Yih (1967) and investigated
the e�ects on the `interfacial mode' of several geometric and physical parameters, such as the
thickness ratio, the viscosity ratio and the density ratio of the two ¯uid system, as well as the
surface tension, each of which was allowed to vary independently. In addition, Yiantsios and
Higgins (1988a,b) reported that, at su�ciently large Reynolds numbers, the ¯ow may also
become unstable to a `shear mode', which is basically a disturbance of the well-known
Tollmien±Schlichting type modi®ed by the presence of an interface.
Zhang et al. (1992) assumed that for their problem, i.e. a Hagen±Poiseuille type suspension

¯ow, that the shear mode similar to that noted by Yiantsios and Higgins (1988a,b) would
indeed become unstable at large values of the Reynolds number. Thus, the interfacial mode
was the focal point of the study for Zhang et al. (1992) since instabilities due to this mode
occurred only at small and moderate values of the Reynolds number, a parameter range of
practical signi®cance in the study of viscous resuspension. However, whilst Scha¯inger (1994)
con®rmed the stable range of the interfacial instability determined by Zhang et al. (1992) he
also established, contrary to Zhang et al. (1992), that an absolute instability existed and
produced some interesting results displaying a complete map of the whole regime of absolute
instability with mean concentration as a parameter.
In this paper the problem of the stability of a Hagen±Poiseuille type ¯ow of a particulate

suspension is re-addressed, but with a continuously varying particle concentration pro®le used
for the base concentration state as opposed to the averaged pro®les considered by Zhang et al.
(1992) and Scha¯inger (1994). However, it should be stressed that the latter author did not
introduce a mean particle concentration on the grounds of the base-state solution, but instead
introduced the mean concentration and the resuspension height as independent parameters.
This was done, as any reasonable de®nition for mean concentration seems physically
questionable, a result con®rmed in the calculation by the fact that the mean concentration, and
in turn the viscosity of the suspension, were both extremely sensitive parameters for the
stability problem. It should be noted that in this study we follow Zhang et al. (1992), namely
we ignore the stabilizing e�ects of interfacial tension since the suspension and the clear ¯uid
are miscible. A detailed overview of exactly when suspension and clear, overlying ¯uid can be
assumed to be miscible can be found in Joseph and Renardy (1993), where this particular
research ®eld commences with the early theory of Korteweg (1901). Whether or not the ¯ow
con®gurations in the suspension and the clear ¯uid can be treated as representative of miscible
¯uids is debatable since superimposed miscible ¯uid can only exist for a ®nite time, whilst a
strati®ed resuspension can be assumed to be steady. In addition, there is the presence of strong
concentration gradients in the resuspension region close to the clear ¯uid interface which
caused Kojima et al. (1984) to introduce the idea of transient interfacial tension.
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The resulting Orr±Sommerfeld equation containing derivatives up to second-order in the
particle concentration, which vary rapidly in the vicinity of the suspension±clear ¯uid interface,
is solved numerically and the nature of the eigenvalues obtained used to determine the stability
behaviour of the ¯ow. Numerical di�culties, such as slow convergence and large CPU times,
are likely to abound because of the highly nonlinear nature of the base particle concentration
pro®les.

2. Basic equations

In Scha¯inger et al. (1990) a simple mathematical model, taking into account the e�ects of
sedimentation and the shear-induced di�usion of particles, was used to examine the behaviour
of a pressure-driven ¯ow of an initially well-mixed particulate suspension of concentration, fs,
along a plane two-dimensional horizontal channel, see Fig. 1. From this model, the fully-
developed particle concentration and bulk velocity ®elds across the channel have been obtained
for a variety of di�erent parameters in Miskin et al. (1996a). It should be noted that the
development of the ¯ow from a uniform plug at the entrance of the channel to the fully-
developed pro®le downstream has been addressed in Miskin et al. (1996b). In this section the
linear stability of the `base' resuspension ¯ows similar to those obtained in Scha¯inger et al.
(1990) will be investigated. Further, in the following analysis the length, velocity and pressure
gradient are non-dimensionalised with respect to 2B, Q/2B and m1Q/8B 3, respectively, where Q
is the ¯ux of clear ¯uid ¯owing across the channel, 2B is the height of the channel and m1 is
the molecular viscosity of the clear ¯uid. Since the ¯ow is incompressible, the non-dimensional
form of the continuity equation is

@u

@x
� @w
@z
� 0 �3�

where x and z are the dimensionless lengths along and normal to the channel walls,
respectively. It should be noted that x $ [0,1] and z $ [0,1], where z = 0 and z= 1 correspond
to the lower and upper surfaces of the horizontal channel, respectively. The dimensionless
velocity components in the x and z-directions are denoted by u and w, respectively. On using
the continuity Eq. (3), the corresponding two-dimensional Navier±Stokes equations for ¯ow in

Fig. 1. Schematic diagram of a two-dimensional Hagen±Poiseuille channel ¯ow.
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a horizontal channel, see Miskin et al. (1996b), reduce on non-dimensionalization to

rr�f�
@u

@t
� u

@u

@x
� w

@u

@z

� �
� ÿ @p

@x

� 1

Re
mr�f�

@2u

@x2
� @
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� @

@z
mr�f�
ÿ � @u

@z
� @w
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� �
� 2

@

@x
mr�f�
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( )
�4�

and

rr�f�
@w

@t
� u

@w

@x
� w

@w

@z

� �
� ÿ @p

@z
ÿ 9f
2kRe

� 1

Re
mr�f�

@2w

@x2
� @

2w

@z2
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� 2

@
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mr�f�
ÿ � @w

@z
� @

@x
mr�f�
ÿ � @u

@z
� @w
@x

� �( )
�5�

where rr and mr are the relative density and viscosity, respectively, between the particulate
suspension and the clear ¯uid, and are expressed as

rr �
rm
r1
� 1� Zf
ÿ �

with Z � r2 ÿ r1
r1

r0 �6�

and

mr �
mm
m1
� 1� 1:5f

1ÿ f
fo

26664
37775

2

�7�

respectively, see Zhang and Acrivos (1994), where f is the local particle volume fraction, fo is
the volume fraction of particles in the state of close packing and typically takes the value 0.58,
see Leighton and Acrivos (1986) and p is the pressure in excess of the hydrostatic value. It
should be noted that the subscripts 1, 2 and m refer to clear ¯uid, particle and suspension
properties, respectively. For this ¯ow the Reynolds number, Re, is de®ned as

Re � Q

n1
�8�

where n1 is the kinematic viscosity of the clear ¯uid.
The dimensionless form of the unsteady particle concentration equation, which takes into

account convective, di�usive and sedimentation e�ects, see Zhang and Acrivos (1994), can be
written as

@f
@t
� u

@f
@x
� w

@f
@z
�

l2
@

@x
D̂c�f�_g @f

@x
� D̂s�f� @_g

@x

� �
� @

@z
D̂c�f�_g @f

@z
� D̂s�f� @_g

@z
� f f �f�

k

� �� �
�9�
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where the ratio of the particle radii to the height of the channel is given by

l � a

2B
�10�

and k is the modi®ed Shields number which gives a measure of the ratio between the viscous
and buoyancy forces and is given by

k � 9

16

m1Q
B3g�r2 ÿ r1�

�11�

The non-dimensional shear rate, gÇ , is expressed as

_g � @u

@z
� @w
@x

� �2

�4 @u

@x

� �2
( )1

2

�12�

In Eq. (9), f(f) is the hindered settling function used in this work, see Leighton and Acrivos
(1986), and it is expressed as

f �f� � 1ÿ f
mr

�13�

Additionally,
DÃ c(f) and DÃ s (f) are the shear-induced di�usion coe�cients which are given as

D̂c � Dc

a2 _g� � Kcf� Kmf
2 1

mr

dmr
df

; D̂s � Ds

a2
� Kcf

2 �14�

where Km and Kc are phenomological constants taken to be 0.65 and 0.43, respectively, see
Phillips et al. (1992).

2.1. Boundary conditions

The boundary conditions on the velocity state that ¯uid cannot penetrate the walls and that
there must be no ¯uid slip at the walls, i.e.

u � w � 0 at z � 0; 1 �15�
However, due to the possibility that in the viscinity of the wall the continuum approach for the
suspension may fail, Kapoor and Acrivos (1995) introduced a slip condition on the lower
boundary which could have an e�ect on the shear mode instability. The reason for such a
modi®cation is that in a distance O(a) from the wall, where a is the particle radius, the discrete
nature of the particles in¯uences the ¯ow of the suspension. Since the particles cannot
penetrate the wall, their concentration within the O(a) thin wall layer is less than in the bulk,
hence the suspension is less viscous. Therefore, the tangential component of the e�ective bulk
velocity, when extrapolated to the wall, will in general di�er from the wall boundary. This
di�erence, termed the wall slip velocity, is according to Kapoor and Acrivos (1995) given by
Amra[(@u)/(@z)], where the numerical value of A varies according to the range of fs being
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considered. In addition, for the suspension, the particle ¯ux must vanish at the walls, i.e.

D̂c�f�_g @f
@z
� D̂s�f� @_g

@z

� �
� f f �f�

k
� 0 at z � 0; 1 �16�

It should be noted that the upper boundary condition [Eq. (16)] reduces to

f � 0 at z � 1 �17�

2.2. Base ¯ow

In the event of the ¯ow becoming fully-developed the problem being considered becomes
independent of the x-coordinate, as in the problem analysed by Scha¯inger et al. (1990), and
from the continuity Eq. (3) the velocity component in the z-direction vanishes. Thus, u0U(z),
w00 and f0f(z), and from Eq. (5) we can deduce that (@p)/(@z) =ÿ[(9f)/(2kRe)] which,
together with the result from Eq. (4) that [(@p)/(@x)] must either be a function of z or a
constant, establishes that [(@p)/(@x)] = const. =ÿK, say, where K is the dimensionless pressure
gradient. In such circumstances we can recover, via boundary conditions [Eqs. (15)±(17)], the
governing momentum and particle concentration equations for the one-dimensional Hagen±
Poiseuille base ¯ow, namely,

d

dz
mr� �f�

d �U

dz

 !
� ÿK �18�

and

d �f
dz
� ÿ�1ÿ �f� � kKKc

�f

k
d �U

dz
�Km ÿ Kc�dmr

df
�f� Kcmr

� � �19�

respectively. The solutions of the system of Eqs. (18) and (19), together with the equations for
the conservation of ¯uid and particles, see Scha¯inger et al. (1990), provide the base ¯ow states
that will be used in the linear stability analysis which is considered in the next section.

3. Linear stability analysis

Due to the complexity of the problem, in this paper we will neglect perturbations in the
particle concentration and perturb the base state for the velocity and pressure as follows:

u � �U�z� � @ĉ
@z
�x; z; t� ; w � ÿ @ĉ

@x
�x; z; t�

p � �p�x� � p̂�x; z; t� ; f � �f�z� �20�
where ĉ and pÃ are normal mode disturbances which take the form
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ĉ � c�z� exp i�axÿ ot�� �
; p̂ � h�z� exp i�axÿ ot�� � �21�

respectively. Additionally, a and o are the complex wavenumber and frequency, respectively.
By substituting Eqs. (20) and (21) into Eqs. (4) and (5), linearizing and eliminating h, we

obtain

irr a �Uÿ o
� �ÿ

c 00 ÿ a2c
�ÿ a �U 00c

n o
� ir 0r

ÿ
a �Uÿ o

�
c 0 ÿ a �U 0c

h i
� 1

Re
mr
ÿ
c iu ÿ 2a2c 00 � a4c

�� 2m 0r
ÿ
c 000 ÿ a2c 0

�� m 00r
ÿ
c 00 � a2c

�n o
�22�

which is the modi®ed Orr±Sommerfeld equation taking into account the variation of density
and viscosity and where 0 denotes di�erentiation with respect to z.

3.1. Boundary conditions

The boundary conditions for the ¯uid require the tangential and normal components of the
¯uid velocity to be continuous at the boundaries, namely the ¯uid not to penetrate or slip at
the boundaries. Thus, for the perturbed ¯ow, we require

c � c 0 � 0 at z � 0; 1 �23�
It should be noted that when the ¯ow is perturbed the position at which the suspension±clear
¯uid interface arises changes from z = ht to z = ht+Z(x,t). For the base ¯ow, the normal and
tangential shear stresses and velocities vary continuously across the interface. This should also
be true in the perturbed case when the interface occurs at z= ht+Z, which requires the
derivation of alternative continuity relations for the normal and tangential shear stresses and
velocities. These conditions have been derived previously by Yih (1967). In the current analysis,
as a result of the utilization of a continuous base particle concentration pro®le, the continuity
of normal and tangential shear stresses and velocities simply requires c and its derivatives to
be continuous across the suspension±clear ¯uid interface, i.e.

cA ÿ cB � c 0A ÿ c 0B � c 00A ÿ c 00B � c 000A ÿ c 000B � 0 at z � ht � Ẑ �24�
where the subscripts A and B refer to the properties of the clear ¯uid and the suspension,
respectively. The matching condition Eq. (24), together with Eq. (22) and the boundary
condition [Eq. (23)], constitute a classical eigenvalue problem in that for each set of parameters
there exists at least one discrete complex eigenvalue, namely, the complex wavenumber a, or
the complex frequency o, respectively. In the next section we discuss a numerical procedure
used to solve such Orr±Sommerfeld eigenvalue problems.

4. Solution technique

In this paper we use a shooting method with an ortho-normalization procedure which
involves the integration of the governing stability Eq. (22) within the clear ¯uid and the
suspension layers from the upper and lower boundaries to the interface z = ht, respectively, for
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a given set of parameters fs, k, Z and Re and an initial guess for the eigenvalue o (or a). It
should be noted that in this study we are to consider a temporal stability analysis which
requires the wavenumber a to be real and a complex frequency o= oR+ioI. The integration
can be performed by means of an adaptive Runge±Kutta method which enables the solution to
be resolved accurately in the region of the suspension±clear ¯uid interface, where rapid
variations of the particle concentration arise. At the interface, the matching condition [Eq. (24)]
is required to be satis®ed but, in view of the fact that only a guess is available for the
eigenvalue o, this condition cannot be met. However, an improvement to o can be calculated
which can then be used as the procedure is repeated, i.e. we shoot from the boundaries to the
interface, check whether the matching condition [Eq. (24)] is satis®ed and then update o if
necessary. The whole process is continued until we can obtain an eigenvalue which di�ers from
its value at the previous iteration by less than some preassigned tolerance. This method has
already been described in more detail in earlier publications, see Shaqfeh and Acrivos (1987)
and Zhang et al. (1992).
The base particle concentration and the velocity pro®les are given by the solutions of the

following equations, see Scha¯inger et al. (1990), namely,

�ht
0

�f �U dz � fs

1ÿ fs

�25�

�ht
0

�1ÿ �f � �U dz � 1 �26�

d

dz
mr� �f �

d �U

dz

 !
� ÿK �27�

and

d �f
dz
� ÿ�1ÿ �f� � kKKc

�f

k
d �U

dz
�Km ÿ Kc�dmr

df
�f� Kcmr

� � for 0RzRht �28�

� 0 for htRzR1 �29�
subject to the boundary conditions

�U � 0 at z � 0 �30�

and

�U � �f � 0 at z � 1 �31�
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5. Numerical results

5.1. Tollmien±Schlichting instabilities for an analytical concentration pro®le

In order to simplify the problem, and keep the computational time within reasonable
bounds, we have opted to neglect the perturbations to the particle concentration. However, one
positive aspect provided in this study is that we have been able to consider realistic particle
concentration pro®les as opposed to the somewhat physically unrealistic piecewise constant
pro®les which have been considered by several authors, for example, Zhang et al. (1992).
Before introducing our calculated base states, obtained from the solution of the system of

Eqs. (25)±(31), we will consider a simpler problem which shows some of the phenomena
present in the real situation. In particular, we investigate whether in the region of rapid
concentration change, where the particle concentration gradient is subject to a large
discontinuity, it is possible to model this by a discontinuity in the concentration itself, as in
Yiantsios and Higgins (1988a). We proceed by considering a two-layered ¯ow in which the
particle concentration adopts the analytical form

�f � 0:4136 cos
p
2
�2z�N

� �
for 0RzR 1

2
�32�

�f � 0 for
1

2
RzR1 �33�

where N is a positive integer which is greater than unity, see Fig. 2(a) and (b), which show the
variation of the particle concentration and the relative viscosity, respectively, of the suspension
across the channel for di�erent values of N. With this analytical form for the concentration,
and hence the relative viscosity via the Eq. (7), the base ¯ow velocity is obtained from the
solution of Eq. (27) in the regions 0RzR1/2 and 1/2RzR1 with the no-slip boundary
conditions considered at z = 0 and 1. Clearly, as N 41 the particle concentration in the
region 0RzR1/2 approaches a uniform pro®le which corresponds to the viscosity of the
suspension in this region being ten times the viscosity of the clear ¯uid in the region 1/2R
zR1. The dimensionless pressure gradient, K, see Eq. (27), is taken to be 11/2 so that the ¯ow
is consistent with that considered by Yiantsios and Higgins (1988a). However, it should be
noted that the situation of continuity of f, mr(f) and U 0 across z = 1/2 is still maintained. For
the similar problem considered by Yiantsios and Higgins (1988a), the discontinuity in the
concentration and the viscosity at z = 1/2 means that the jump conditions, see Yih (1967),
have to be satis®ed at the interface.
In this test problem the ¯ow stability is considered with respect to a shear mode of the

Tollmien±Schlichting type which becomes unstable for large values of the Reynolds number.
We follow Yiantsios and Higgins (1988) by taking the relative density between the two layers
to be unity, that is Z = 0 in Eq. (7). Our analysis begins with the calculation of the neutral
stability curves, i.e. determining where oI=0 for increasing values of N, from which the critical
Reynolds numbers, Recr, were obtained, see Table 1. Since the viscosity in the bottom half of
the duct tends to a uniform value as N becomes larger, it could be implied that the value of
Recr will also tend to a particular value. However, from the results presented in Table 1, it is
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clear that this is not the case and that Recr increases as N increases. One might have expected
that Recr would tend to a value close to 20458, which was found by Yiantsios and Higgins
(1988a) when there is a jump in the viscosity at z= 1/2. In order to investigate why our value
for Recr diverges as N increases it is necessary to examine the modi®ed Orr±Sommerfeld
Eq. (22). It becomes apparent that as N increases, the magnitude of the coe�cients of the
terms in Eq. (22) such as [(d2mr)/(dz

2)], namely, = [(d2mr)/(df
2)]/[(df)/(dz)]2+[(dmr)/(dz)]/

[(d2f)/(dz 2)] become progressively larger in the region of rapid variation of viscosity just below

Fig. 2. (a) The variation of the particle concentration, f; and (b) the relative viscosity, mr(f), with the height above
the bottom surface of the channel, z.
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the interface z = 1/2. As the size of such viscosity gradient coe�cients increase, the modi®ed
Orr±Sommerfeld Eq. (22) can only be satis®ed for the case of neutral stability if Recr becomes
su�ciently large, i.e. of an order comparable to the magnitude of the viscosity gradient
coe�cients of Eq. (22). Thus, as N 41 we require that Recr41, i.e. the critical value of the
Reynolds number for neutral stability continually increases, as the situation in which there is a
the discontinuity in the viscosity of the ¯uid is approached. It should be noted that we were
able to replicate the value of Recr, namely 20458, obtained by Yiantsios and Higgins (1988a)
when a jump in viscosity was considered, i.e. when the term involving viscosity gradients was
neglected.
The cause of the continual growth in Recr as N 41 is possibly due to the exclusion of the

term relating to perturbations in the particle concentration in the full Orr±Sommerfeld Eq. (22).
Although the quantity x may have a relatively small magnitude, the neglected term, namely,
[1/Re][(d2)/(dz 2) + a 2] [xU 0(dmr)/(df)] has an order which is comparable to the terms in
Eq. (22) involving viscous gradients. Additionally, the implementation of a ®xed suspension±
clear ¯uid interface is physically questionable since in reality the suspension may bulge into the
clear ¯uid or vice versa, however, this is accounted for provided the disturbed interface can be
linearized about z = ht.

5.2. E�ect of the Reynolds number on the interfacial mode instability

We will now present results which are obtained by solving the base ¯ow system [Eqs. (25)±
(31)], together with the modi®ed Orr±Sommerfeld Eq. (22) subject to the boundary conditions
[Eq. (23)]. Since the particle concentration within the channel varies continuously, the
quantities c, c 0, c0 and c0 0 are also continuous across the suspension±clear ¯uid interface. In
order to be consistent with Zhang et al. (1992), we take the Galileo number which is given as

Ga � 8B3g

n21
�34�

to be 7.9 � 107, which corresponds to water at 208C and to a duct spacing 2B= 0.02 m. The
other parameters fs, Z and Re (or k) were set at various values of practical interest and in
particular, Re was allowed to vary up to O(103). Within this range of values of Re, any
instabilities are due to the interfacial mode as opposed to the Tollmien±Schlichting mode
which occurs at large Reynolds numbers, i.e. Re0O(104). Hence, the remainder of the results
will be devoted simply to interfacial mode instabilities and Tollmien±Schlichting instabilities
will not be considered further. It should be noted, that the expression for Re in terms of the

Table 1
The critical Reynolds numbers, Recr, for increasing values of N

N 2 3 4 6 8 12 15 20 25
Recr 7188 11562 16562 24688 31876 51428 70476 108572 169524
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other parameters that occur in the problem is given by

Re � 2

9
kZGa �35�

The instability characteristics of these interfacial disturbances are illustrated in Figs 3±5, where
the real and imaginary parts, respectively, of the frequency o have been plotted against the real

Fig. 3. (a) The variation of the real part, oR; and (b) the imaginary part, oI, of the complex wave frequency, o,
with the real wavenumber, a, when Re = 87.5 and Z = 10ÿ3 for various values of the initial feed particle
concentration, fs.
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wavenumber a for a relative density ratio Z = 10ÿ3, and for a variety of values of the feed
concentration fs and of Re. We choose Z = 10ÿ3 so that stability characteristics can be
determined for a variety of di�erent feed concentrations and ¯ow conditions without involving
the e�ects of the strati®cation of density which are considered separately later. From Fig. 3a,
4a and 5a it can be seen that the real part of the frequency oR varies approximately linearly
with a, as indicated by Zhang et al. (1992), with the exception of disturbances at large a when

Fig. 4. (a) The variation of the real part, oR; and (b) the imaginary part, oI, of the complex wave frequency, o,
with the real wavenumber, a, when Re = 385 and Z = 10ÿ3 for various values of the initial feed particle
concentration, fs.
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Re= 87.5. The gradient of oR with respect to a represents the group velocity of a wave packet
and it can be seen that, at ®xed values of Re, these gradients increase with the feed
concentration fs which is in agreement with the results of Zhang et al. (1992). However, it
should be noted that when Re= 87.5, as shown in Fig. 3a, the gradients of the curves, which
represent the group velocity of unstable disturbances, only increase with fs for values of a
greater than15. Additionally, from examination of Fig. 3a, 4a and 5a, it is noticeable that the

Fig. 5. (a) The variation of the real part, oR; and (b) the imaginary part, oI, of the complex wave frequency, o,
with the real wavenumber,a, when Re= 700 and Z = 10ÿ3 for various values of the initial feed particle
concentration, fs.

I. Miskin et al. / International Journal of Multiphase Flow 25 (1999) 501±530 515



group velocities of disturbances, at ®xed values of fs, decrease with Re except for the case
when fs = 0.01. The reason behind such observations is, as yet, unclear and needs further
investigation.
It should be noted, see Drazin and Reid (1981), that there is said to be `convective'

instability when no unstable mode exists which has a group velocity equal to zero, because
then the disturbance remains small at any ®xed point although it grows as it moves
downstream. The work of Zhang et al. (1992) established that the disturbances, for the range
of parameters they considered, were indeed convective in nature, i.e. the interfacial waves grew
as they moved along the channel. We came to a similar conclusion except in the single case
when fs=0.01 and the ¯ow Reynolds number is 87.5, see Fig. 3a. In this case it is seen that
the gradient of the curve, and hence the group velocity of the disturbance, is very small at
small wavenumbers. Hence, in this case there is a possibility that the ¯ow may be `absolutely'
unstable, see Drazin and Reid (1981). In addition, the presence of a local minimum and
maximum in the vicinity of a210 for this particular value of fs could also suggest the same
e�ect. This occurs if there exists an unstable mode which has a zero group velocity and thus
any disturbance will grow at some ®xed points. The range of parameters considered in this
investigation is by no means exhaustive and thus the existence of other parameter ranges for
which absolute instabilities exist cannot be excluded, especially since Scha¯inger (1994) showed
the presence of such a phenomenon for fs = 0.0114 and Re= 200.
Fig. 3b, 4b and 5b illustrate how the imaginary part of the frequency oI, which determines

the growth rates of unstable disturbances, varies with the wavenumber a at values of Re of
87.5, 385 and 700, respectively. It is clear from all these ®gures that oI>0 for only relatively
small values of a, indicating that the ¯ow is susceptible to long wavelength disturbances. In
contrast, in the majority of the calculations considered by Zhang et al. (1992) in which a
piecewise uniform concentration pro®le was used oI > 0 was found for both small and large
values of a. This is illustrated in Fig. 6, which shows the variation of oI with a for the
piecewise uniform concentration when Re = 385 and Z = 10ÿ3. So, for the piecewise uniform
base concentration pro®les, as considered by Zhang et al. (1992), both long and short
wavelength instabilities were found to co-exist for Reynolds numbers up to O(103). Whilst this
is contrary to the experimental observations of Kao and Park (1972), the phenomena is
supported by the work of Scha¯inger et al. (1995) who observed the presence of co-existence of
both long and short wavelength instabilities, with the long and short wavelengths of the order
40B and 2B, respectively. The assumption made by Zhang et al. (1992) in which uniform
concentration and viscosity pro®les, with a discontinuity at the interface, are considered is
equivalent to ignoring di�usion e�ects in systems of miscible homogeneous ¯uids because the
di�usion tends to smooth out any discontinuities. In the experiments performed by Tan and
Homsy (1988) it was shown that di�usion tends to stabilize short wavelength instabilities.
Thus, it could be that the calculations considered by Zhang et al. (1992) have over estimated
the in¯uence of short wavelength instabilities, i.e. their e�ect could be eliminated or reduced if
continuous variations in the particle concentration had been considered, however, as the
suspension±clear ¯uid interface remains sharp under most conditions it is likely that the real
reason is far more complex.
One possible reason for the predominant e�ect of long wavelength instabilities when

considering continuous base particle concentration pro®les can be attributed to the
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corresponding base velocity pro®les. In particular, the base velocity pro®le varies smoothly
across the whole channel and within any localized region the shear rate appears to be
approximately constant, i.e. locally the ¯ow is of a Couette type. It is well known, see Drazin
and Reid (1981), that a Couette type ¯ow always becomes unstable as a result of long
wavelength disturbances and consequently this is also true for the current case. Alternatively,
where a piecewise uniform pro®le is used as the base state, as in Zhang et al. (1992), the shear
rate is discontinuous at the suspension±clear ¯uid interface and thus the localized ¯ow in this
region does not resemble a Couette type ¯ow. Accordingly, for such a ¯ow short wavelength,
as well as long wavelength, instabilities abounded. Since `miscible' ¯uids usually have an
interface across which the viscosity varies smoothly, the former situation, i.e. where the ¯ow is
locally of a Couette type, tends to arise very frequently and this may be why long waves
always seem to be more predominant. It should be noted that the suspension and the clear
¯uid are considered as two miscible ¯uids in the current analysis.

5.3. E�ect of the initial feed concentration on the interfacial mode instability

In addition, Zhang et al. (1992) showed from their results that the growth rates of the
disturbances increase as the initial feed concentration fs decreases. This enhancement of
growth rates was attributed to the fact that the height, ht, of the suspended layer in the channel
decreased dramatically following a decrease in fs, as required by particle mass conservation in
the base ¯ow. It should be recalled that an asymptotic analysis for short wavelength
instabilities in the strati®ed ¯ow of two ¯uids, see Yiantsios and Higgins (1988a), showed that

Fig. 6. The variation of the imaginary part, oI, of the complex wave frequency, o, with the real wavenumber, a,
with Re= 385 and Z = 10ÿ3 for various values of the initial feed particle concentration, fs when a piecewise

constant base particle concentration pro®le, f, was used.
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the ampli®cation rate oI is proportional to the square of the shear rate at the interface; see
Hinch (1984) for a simple physical explanation of this instability mechanism. Since the shear
rate at the interface is found to be a monotonically decreasing function of ht, see Scha¯inger et
al. (1990), the reduction of fs leads to the pronounced increase in the shear rate and, hence, in
the maximum value of oI.

This trend, in which the growth rate of disturbances increase as fs decreases, is not borne
out by our results, see Fig. 3b, 4b and 5b, which show that the growth rate is always much
larger when fs = 0.3 compared with to the other lower values of fs considered. In particular,
apart from the dominant growth that occurs when fs = 0.3, there does not seem to be any
pattern in the growth rates as fs decreases at ®xed values of Re. Also, the magnitude of the
growth rates observed in this study appear to be much larger than those predicted by Zhang
et al. (1992) and this may be seen by comparing Fig. 4b and 6, respectively, which refer to the
situation when Re= 385 and Z = 10ÿ3.
In order to examine our results for the growth rates of disturbances occurring at

particular values of fs in a more critical manner, it is necessary to visualize the base
particle concentration and the corresponding velocity pro®les associated with each case.
Figs. 7a, 8a and 9a depict the particle concentration pro®les when Re is 87.5, 385 and 700,
respectively, for a variety of values of fs, while Figs. 7b, 8b and 9b depict the corresponding
bulk velocity pro®les in the x-direction. From Fig. 7a it can be seen that when fs = 0.01 and
Re= 87.5 the predicted value of the particle concentration in the suspension region is about
0.575. This corresponds to the suspension layer having a relative viscosity of O(104) times that
of the clear ¯uid. For values of fs=0.1, 0.2 and 0.3 the corresponding relative viscosity within
the suspension layer compared with the clear ¯uid is only of O(102). The very high particle
concentration, and hence the very high relative viscosity, of the suspension in the lower region
of the channel when fs=0.01 and Re = 87.5 ensures that the velocity within this region is
vanishingly small. In fact, from Fig. 7b it is noticeable that there is virtually no ¯ow across the

Fig. 7. (a) The variation of the base particle concentration, f; and (b) bulk x-component of velocity U, with the
height above the bottom surface of the channel, z, when Re = 87.5 and Z= 10ÿ3 for various values of the initial

feed particle concentration, fs.
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lower half of the channel, which may explain why the growth rate of the disturbances is much
smaller when fs=0.01 and Re= 87.5 as compared with corresponding values at larger values
of fs. In addition, this may have some bearing on why, as explained earlier, the group velocity
of the disturbance occurring when fs = 0.01 and Re = 87.5, becomes vanishingly small,
leading to the possibility of the ¯ow becoming absolutely unstable.
As pointed out earlier, the greatest rate of growth of unstable disturbances, regardless of the

value of Re, seems to occur when fs=0.3. One might explain this from an examination of
Fig. 7a, 8a and 9a from which it can be observed that the maximum particle concentration,

Fig. 8. (a) The variation of the base particle concentration, f; and (b) bulk x-component of velocity U, with the

height above the bottom surface of the channel, z, when Re= 385 and Z = 10ÿ3 for various values of the initial
feed particle concentration, fs.

Fig. 9. (a) The variation of the base particle concentration, f; and (b) bulk x-component of velocity U, with the
height above the bottom surface of the channel, z, when Re= 700 and Z = 10ÿ3 for various values of the initial
feed particle concentration, fs.
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and hence the maximum e�ective viscosity, within the suspension layer appears to decrease as
fs increases which it would appear might have a destabilizing e�ect on the ¯ow. Alternatively,
from the examination of the bulk velocity pro®les for the base states at a variety of values of
Re, see Fig. 7b, 8b and 9b, it can be seen that its magnitude increases markedly as fs increases.
This is caused by the enhancement of the shear-induced di�usive ¯ux which is due to an
increased number of interparticle interactions which have resulted as a direct consequence of
increasing fs. Since inertial e�ects appear to increase with fs, the suspension layer may be
more susceptible to instabilities at higher values of fs. However, if this last statement is true,
then one can inquire why growth rates of corresponding disturbances, i.e. at the same value of
Re, occurring when fs=0.2 are smaller in magnitude than those which occur when fs=0.1.
This also contradicts the ®ndings of Zhang et al. (1992) who noticed that the growth rates of
long wavelength instabilities, as well as short wavelength instabilities, diminished in magnitude
as fs increased.
In order to address these discrepancies it is necessary to refer back to the beginning of this

section. In particular, it should be recalled that a continuous arti®cial base particle
concentration pro®le was introduced in order to approximate the situation in which the relative
viscosity of the suspension changed discontinuously at the interface with the clear ¯uid. The
pro®le was constructed so that by simply increasing the value of an adjustable parameter, N,
the concentration was able to approach the discontinuous situation. From these calculations it
was found that the neutral stability curve for our ¯ow did not resemble the known neutral
stability curve for the discontinuous pro®le even as the continuous pro®le approached such a
pro®le. Instead the critical value of Re, beyond which the ¯ow became unstable, was found to
diverge as the continuous concentration pro®le became steeper in the vicinity of the interface in
order to approximate the discontinuity. It was concluded that the increasingly large gradients
in the particle concentration and the e�ective viscosity encountered as the discontinuity was
approached, and the absence of terms with similar orders of magnitude involving perturbations
to the particle concentration, lead to a blow up of viscous gradient terms in the governing
modi®ed Orr±Sommerfeld Eq. (22) and hence gave rise to spurious results. Such an occurrence
may possibly give an explanation for the uncharacteristic behaviour of the growth rates of the
instabilities considered in the current analysis.
In order to analyse such a claim we present Figs 10±12 which illustrate how the gradients of

the base particle concentration pro®les vary across the channel when Re = 87.5, 385 and 700,
respectively. From these ®gures the most striking observation is that the magnitude of the
gradient in the particle concentration, at a ®xed value of Re, is always the largest at the
suspension±clear ¯uid interface when fs=0.3. In fact, the di�erence in the magnitude of the
maximum gradients in the particle concentration at other values of fs compared to those when
fs=0.3 is always very substantial. The size of such gradients when fs=0.3 suggest that the
coe�cient (d2mr)/(dz

2) has an order of magnitude of at least 104 and in the case when
Re= 700, which is illustrated in Fig. 12, the value of (d2mr)/(dz

2) has a magnitude of about
105, i.e. the terms involving the coe�cient (d2mr)/(dz

2) are likely to swamp the other terms
within the modi®ed Orr±Sommerfeld Eq. (22), as described earlier, and consequently the
solutions of this equation will be dramatically altered. From these ®ndings it appears that the
results obtained when fs=0.3, irrespective of the value of Re, may all be spurious in nature
and thus cannot be relied upon. However, by initially re-analysing the results presented in
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Fig. 11. The variation of the gradient in the base particle concentration, (df)/(dz), with the height above the bottom
surface of the channel, z, when Re= 385 and Z = 10ÿ3 for various values of the initial feed particle concentration,
fs.

Fig. 10. The variation of the gradient in the base particle concentration, (df)/(dz), with the height above the bottom
surface of the channel, z, when Re = 87.5 and Z = 10ÿ3 for various values of the initial feed particle concentration,
fs.

I. Miskin et al. / International Journal of Multiphase Flow 25 (1999) 501±530 521



Fig. 4b and 5b, which show the growth rates of unstable disturbances for a variety of values of

fs when Re = 385 and 700, respectively, it can be seen that apart from the results presented at

very small wavenumbers the growth rates of the instabilities appear to increase in magnitude as

fs decreases. Hence, although the results may not be quantitatively sound, at least they appear

to be in qualitative agreement with the work of Zhang et al. (1992). This result seems to be

intuitively correct since as fs increases so does the height of the suspension layer, as indicated

in Fig. 7a, 8a and 9a, resulting in an increase in the e�ective viscosity across a larger region of

the channel which thus has a stabilizing e�ect on the ¯ow.

Now by returning to Fig. 3b, which shows the growth rates of unstable disturbances for a

variety of values of fs when Re = 87.5, it is plain that the growth rates, even after the

exclusion of the result when fs=0.3, are very large and do not follow the qualitative behaviour

expected. On examination of Fig. 10 it can be seen that the gradient in the particle

concentration has a magnitude of at least 15 compared with about 10 or less for the

corresponding cases when Re = 385 and 700. Thus, when Re= 87.5, the large magnitude of

the viscosity gradient coe�cients such as (d2mr)/(dz
2) may once again a�ect the validity of the

modi®ed Orr±Sommerfeld Eq. (22) and put the results obtained for this case into doubt.

However, it should be stressed that even with the questionable nature of some of these results

the approach adopted is still a move in the right direction with an attempt to introduce the

physically observed particle concentration pro®le with its rapidly changing concentration value

close to the interface, as opposed to the more arti®cial discontinuous concentration model.

Since such a model clearly highlights the cause of why some of the results may be dubious and

how with enhanced computer power the matter could be resolved. In addition, it makes the

Fig. 12. The variation of the gradient in the base particle concentration, (df)/(dz), with the height above the bottom
surface of the channel, z, when Re= 700 and Z = 10ÿ3 for various values of the initial feed particle concentration,

fs.
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stability analysis of the discontinuous concentration model presented by Yiantsios and Higgins
(1988a) questionable, since such results cannot be approached from the continuous model
utilizing Eqs. (32) and (33) as N increases.
By referring to Fig. 4b and 5b one can see a trend indicating a decrease in the maximum

magnitude of the growth rates of the unstable disturbances at a particular value of fs, as Re
increases from 385 to 700. In fact, as Re increases from 385 to 700, the maximum growth rates
of the unstable disturbances all decrease by at least a factor of three. It should be recalled that
such a trend was also observed by Zhang et al. (1992). This trend is further illustrated by
Fig. 13 which shows the variations of oI with a for various values of fs when Re = 1000 and
Z = 10ÿ3. In particular, the magnitude of the growth rates decrease as Re increases from 700 to
1000. Additionally, the results again agree with the ®ndings of Zhang et al. (1992) since the
magnitude of the growth rates when Re = 1000 decrease with increasing fs. This result is true
except at very small values of a when fs=0.2. The reason for this may be due to the presence
of increasing magnitudes of the particle concentration gradients as Re increases which is the
reason why results for fs=0.3 have not been presented in this case. From such results it may
be possible to infer that instabilities due to the interfacial mode restabilize at a su�ciently large
value of Re, provided that the magnitudes of particle concentration gradients remain
reasonably small in the region of the suspension±clear ¯uid interface. Nevertheless, it should be

Fig. 13. The variation of the imaginary part, oI, of the complex wave frequency, o, with the real wavenumber, a,
when Re = 1000 and Z= 10ÿ3 for various values of the initial feed particle concentration, fs.
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emphasized that this does not imply the existence of an experimentally observable
restabilization of unstable interfacial waves in such ¯ows, because on account of three-
dimensional disturbances an increase in the values of Re does not restabilize the ¯ow, but
rather changes the direction of the growing modes and, more speci®cally, that of the most
rapidly ampli®ed mode which in general is oblique when compared with other growing modes,
see Magen and Patera (1986). In any case, it is very probable that an unstable mode of the
Tollmien±Schlichting type will manifest itself well before the present unstable disturbance
appears to become stable.

Apart from reducing the magnitude of the growth of the unstable modes, it can also be seen
that the range of values of a for which the ¯ow is unstable tends to decrease as Re increases.
This is further illustrated on examination of Fig. 14, which depicts the neutral stability curves
for ¯ows in which fs=0.1 and 0.3, where Z = 10ÿ3. In particular, when fs=0.1 it is clear that
the range of values of a for which instabilities occur decreases with an increase in Re. This is
an obvious consequence of the diminishing growth rates which were discussed above, i.e. for
certain values of a an overall reduction in the growth rate will mean that unstable disturbances
will appear to restabilize as Re increases and hence it will appear that the range of values of a
for which instabilities exist is reduced. When fs=0.3 it can be seen that the range of a for
which instabilities exist increases rapidly for Re greater than about 300. Again, the most likely
cause is that when fs=0.3 the limit of total resuspension is approached at much lower values

Fig. 14. The neutral stability diagram for Z= 10ÿ3 when the initial feed particle concentration, fs, is 0.1 and 0.3.
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of Re than it would be for lower values of fs, i.e. when fs=0.3 there are many more
interparticle interactions occurring than would be the situation at lower values of fs, thus
leading to a greater amount of migration of particles. Consequently, discontinuous particle
concentration and relative viscosity pro®les are being approached which gives rise to the rapid
increase in the magnitude of the eigenvalues, as discussed earlier in this section.
It should be noted that the neutral stability diagram, shown in Fig. 14, representing our

calculations is quite di�erent qualitatively to the corresponding diagram produced by Zhang et
al. (1992). In our case, irrespective of the value of Re, instabilities always take the form of long
wavelength disturbances. However, Zhang et al. (1992) found that at a particular value of Re
the wavelengths of the unstable disturbances are within two distinct ranges, long and short,
respectively, and with increasing Re disturbances over the whole spectrum of wavelengths
become unstable. However, by ignoring the instabilities associated with short wavelength
disturbances, whose e�ect is most certainly over estimated, the discrepancy between the current
work and the neutral stability curves of Zhang et al. (1992) is reduced. In principle, we would
have qualitative agreement in such a situation except within the region in which Re < 102,
since here the validity of our analysis is uncertain, as discussed earlier.

5.4. Interfacial mode instabilities for an analytical concentration pro®le

The results considered at the beginning of this section involved the utilization of a
continuously varying arti®cial particle concentration pro®le in which the magnitude of the
discontinuity of the gradient continued to increase. However, all the calculations performed
were exclusively in the range where the Reynolds number was large, corresponding to the
instability mode of the Tollmien±Schlichting type. Naturally, for completeness, it would be
useful to analyse the behaviour of instabilities which occur at small values of Re, i.e. those due
to the interfacial mode. In particular, the situation is considered in which an arti®cial
concentration pro®le approaches the discontinuous gradient case used to obtain the results
illustrated in Fig. 6, namely, when fs=0.1, Re= 385 and Z = 10ÿ3, with f=0.41 and
ht=0.56. Therefore, a continuous function for which the magnitude of the discontinuity in the
gradient as N becomes large approaches that in the concentration, is given by

�f � 0:41 cos
p
2

z

0:56

� �N
( )

for 0RzR0:56 �36�

� 0 for 0:56RzR1 �37�
where N is a positive integer greater than unity, see Fig. 15 which shows the variation of the
particle concentration across the channel for di�erent values of N. The maximum value of f
has to be set at 0.41 compared with a value of 0.47 in order that the mean concentration of the
model as N 41 agrees with that from the concentration pro®le in Fig. 8a. Fig. 16 shows how
oI varies with a for di�erent values of N and how it compares to the discontinuous solution. It
is clearly seen that as N increases from 8 to 16 the behaviour of the unstable mode deviates
signi®cantly from the mode corresponding to the discontinuous situation, i.e. the maximum
magnitude of the growing mode increases ®ve fold as N increases from 8 to 16 and it diverges
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Fig. 15. The variation of an analytical particle concentration, f, with the height above the bottom surface of the
channel, z, for increasing values of N.

Fig. 16. The variation of the imaginary part, oI, of the complex wave frequency, o, with the real wavenumber, a,
when Re= 385 and Z= 10ÿ3 for a analytical base particle concentration pro®le, f, with increasing values of N.
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from the growing mode obtained by using the constant particle concentration pro®le with a
discontinuity at the interface. This type of behaviour has all the typical hallmarks which were
associated with the results obtained when fs=0.3. However, this discrepancy between the
results from the limiting situation and those from the limit itself should not cause undue
concern since it arises solely due to the mathematical model being solved. If one is to recover
the limit situation from the limiting situation then the Orr±Somerfeld representation of the
instabilities in the limiting situation must be such that it nulli®es the strong concentration
gradients in the suspension close to the suspension±clear ¯uid interface from radically changing
its solution. At present exactly how this modi®cation to the equation should be undertaken is
unclear, and whether the extra contributions from the neglected concentration perturbations
would rectify the model is debatable, but the fact remains that the introduction of a more
physical representation of the basic ¯ow is distorting the governing linear stability model from
the form this equation would assume at its limit.

5.5. E�ect of density strati®cation on the interfacial mode instability

As mentioned in Section 5.2, we now examine what e�ect density strati®cation has on the
stability of the ¯ow. Fig. 4b and Fig. 17 show how the imaginary part of the frequency oI

varies with the wavenumber a when Z = 10ÿ3 and Z = 0.1, respectively, for various values of
fs when Re = 385. It should be noted that by changing the value of Z we need to modify
either k or Ga if the value of the ¯ow Reynolds number, Re, is to remain unchanged, see

Fig. 17. The variation of the imaginary part, oI, of the complex wave frequency, o, with the real wavenumber, a,
when Re = 385 and Z= 10ÿ1 for various values of the initial feed particle concentration, fs.
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Eq. (35). Unfortunately, by changing k, the base particle concentration and bulk velocity
pro®les will be altered and so it would be di�cult to make a comparison between the
calculation performed at Z = 10ÿ3 and 0.1. By decreasing Ga from 7.9 � 107 to 7.9 � 105,
whilst increasing Z from 10ÿ3 to 0.1, we are able to impose Re at 385 without changing k,
which is set as 2.2 � 10ÿ2. Further, because the governing base ¯ow Eqs. (25)±(31), together
with the modi®ed Orr±Sommerfeld Eq. (22) and its corresponding boundary conditions
[(Eq. (23)], are independent of Ga the stability of the ¯ow is only in¯uenced by the variation of
Z. However, by changing Ga we are e�ectively altering either the height of the channel or the
viscosity of the clear ¯uid, which would be very inconvenient if an experiment was to be
contemplated. In any case, on comparison of the ®gures it can be seen that an increase in
density strati®cation has a stabilizing e�ect in that the magnitude of the interfacial growing
modes diminish regardless of the value of fs. This observation is in agreement with what has
been found by other researchers including Yih (1967) and Yiantsios and Higgins (1988a,b). It
should be noted that this result relates to the situation where the density strati®cation alone is
enhanced. If Z was increased and k was decreased while Re and Ga were kept constant, the
stability of he ¯ow would be a�ected by a combination of two e�ects, namely, the
enhancement of viscous strati®cation which is the driving force for the instability, and the
stabilizing e�ect of greater density strati®cation. The work of Zhang et al. (1992) has focussed
on such complex matters, however, since their results are rather more involved than ours a
direct comparison is very di�cult.

6. Conclusions

In this paper a linear stability analysis has been presented dealing with the formation of
interfacial waves in a two-dimensional Hagen±Poiseuille resuspension ¯ow. The base particle
concentration and bulk velocity of the suspension were calculated from the solution of the
laminar resuspension ¯ow problem considered by Scha¯inger et al. (1990). The nonlinear
nature of the particle concentration within the suspension layer was included in our analysis,
however, the e�ects of ¯uctuations in the particle concentration were ignored because of the
numerical di�culties their inclusion would cause.
Numerical solutions of the resulting modi®ed Orr±Sommerfeld system of equations were

then obtained by means of a classical shooting method with the aid of orthonormalization. The
computations initially focussed on the instabilities due to the Tollmien±Schlichting mode which
resulted at Reynolds numbers of O(104). In these calculations a continuously varying arti®cial
base particle concentration was employed, from which the corresponding base velocity pro®le
could be obtained, which could be adjusted by means of a parameter to approach a
discontinuous piecewise constant particle concentration pro®le. It was found that as the
magnitude of the discontinuity in the gradient of the continuous pro®le continued to increase
the critical Reynolds number at which the ¯ow became unstable increased without any upper
bound instead of converging to a known value. Consequently, it was shown that the terms
involving coe�cients of viscosity gradients within the modi®ed Orr±Sommerfeld equation grew
rapidly as the discontinuous situation was approached. It was concluded that such behaviour
might have resulted from the fact that we neglected terms involving ¯uctuations in the particle
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concentration even though in certain situations they have an order of magnitude comparable
to the terms involving viscosity gradients.
Computations were then considered which dealt with instabilities due to the interfacial mode

which occurred at Reynolds numbers of O(1) and above. In this case the base particle
concentration and velocity pro®les were calculated from the governing momentum, particle
di�usion and conservation of mass equations. The validity of the solutions obtained were again
brought into question especially in situations where the magnitude of the base particle
concentration pro®le was large in the vicinity of the suspension±clear ¯uid interface.
Consequently, the solutions obtained in such situations were ignored since they were
considered to be spurious in nature.
The results of our computations predict that interfacial instabilities are always a result of

long wavelength disturbances. It was also found that the resuspension ¯ow was convectively
unstable, i.e. disturbances grew as they were convected downstream. However, the state of
absolute instability, where disturbances grow at ®xed points in space, was possible when the
feed concentration was very small. The possible existence of this latter class of instability for a
di�erent parameter range cannot be excluded. The group velocity of the unstable disturbances
tended to be almost linear in nature and their magnitude appeared to increase with increasing
feed concentration and decrease with an increase in the ¯ow Reynolds number. The rate of
growth of unstable disturbances was found to increase when the initial feed concentration was
decreased and vice versa. In addition, it was predicted that both the growth rates of
instabilities and the range of wavenumbers for which they occur decrease as the ¯ow Reynolds
number increases. This apparent restabilization of the resuspension ¯ow was discounted since
there is evidence that the largest growing modes usually changes its direction of growth as the
¯ow Reynolds number increases. Finally, it was shown that an increase in the density
strati®cation of the ¯ow has a stabilizing e�ect.
The principal assumption made to simplify computations, i.e. the neglect of ¯uctuations in

the particle concentration, has limited the validity of the linear stability analysis performed. In
particular, any resuspension ¯ow in which a steep particle concentration pro®le exists, be it in
a situation where total resuspension is being approached or where a stagnant sediment layer
exists, may lead to the production of spurious results. Such problems may only be resolved if
the ¯uctuations in the particle concentration are included which will require an increase in the
CPU used for the already di�cult calculations. However, the calculations are a considerable
step in the right direction in that a continuous concentration pro®le has been utilized, as
compared with that of the more unrealistic piecewise constant pro®le utilized by Zhang et al.
(1992).
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